Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113057, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656617

RESUMO

While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling.


Assuntos
Consolidação da Memória , Endocanabinoides , Interneurônios/fisiologia , Cerebelo , Medo/fisiologia , Plasticidade Neuronal/fisiologia
2.
Front Synaptic Neurosci ; 13: 681068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108872

RESUMO

The cerebellum is critically involved in the formation of associative fear memory and in subsequent extinction learning. Fear conditioning is associated with a long-term potentiation at both excitatory and inhibitory synapses onto Purkinje cells. We therefore tested whether fear conditioning unmasks novel forms of synaptic plasticity, which enable subsequent extinction learning to reset cerebellar circuitry. We found that fear learning enhanced GABA release from molecular layer interneurons and this was reversed after fear extinction learning. Importantly an extinction-like stimulation of parallel fibers after fear learning is sufficient to induce a lasting decrease in inhibitory transmission (I-LTDstim) in the cerebellar cortex, a form of plasticity that is absent in naïve animals. While NMDA (N-methyl-D-aspartate) receptors are required for the formation and extinction of associative memory, the role of GluN2D, one of the four major NMDA receptor subunits, in learning and memory has not been determined. We found that fear conditioning elevates spontaneous GABA release in GluN2D KO as shown in WT mice. Deletion of GluN2D, however, abolished the I-LTDstim induced by parallel fiber stimulation after learning. At the behavioral level, genetic deletion of GluN2D subunits did not affect associative learning and memory retention, but impaired subsequent fear extinction learning. D-cycloserine, a partial NMDA receptor (NMDAR) agonist, failed to rescue extinction learning in mutant mice. Our results identify GluN2D as a critical NMDAR subunit for extinction learning and reveal a form of GluN2D-dependent metaplasticity that is associated with extinction in the cerebellum.

4.
Nat Commun ; 11(1): 6407, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335094

RESUMO

Endocannabinoids retrogradely regulate synaptic transmission and their abundance is controlled by the fine balance between endocannabinoid synthesis and degradation. While the common assumption is that "on-demand" release determines endocannabinoid signaling, their rapid degradation is expected to control the temporal profile of endocannabinoid action and may impact neuronal signaling. Here we show that memory formation through fear conditioning selectively accelerates the degradation of endocannabinoids in the cerebellum. Learning induced a lasting increase in GABA release and this was responsible for driving the change in endocannabinoid degradation. Conversely, Gq-DREADD activation of cerebellar Purkinje cells enhanced endocannabinoid signaling and impaired memory consolidation. Our findings identify a previously unappreciated reciprocal interaction between GABA and the endocannabinoid system in which GABA signaling accelerates endocannabinoid degradation, and triggers a form of learning-induced metaplasticity.


Assuntos
Endocanabinoides/metabolismo , Consolidação da Memória/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cerebelo/metabolismo , Condicionamento Clássico , Medo , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Células de Purkinje/metabolismo , Células de Renshaw/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
J Neurosci ; 40(17): 3374-3384, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32229518

RESUMO

Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a ß-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of ß-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.


Assuntos
Adenilil Ciclases/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Angústia Psicológica , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/fisiologia
6.
Cell Rep ; 17(1): 86-103, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681423

RESUMO

Synaptic receptors gate the neuronal response to incoming signals, but they are not homogeneously distributed on dendrites. A spatially defined receptor distribution can preferentially amplify certain synaptic inputs, resize receptive fields of neurons, and optimize information processing within a neuronal circuit. Thus, a longstanding question is how the spatial organization of synaptic receptors is achieved. Here, we find that action potentials provide local signals that influence the distribution of synaptic AMPA receptors along dendrites in mouse cerebellar stellate cells. Graded dendritic depolarizations elevate CPEB3 protein at proximal dendrites, where we suggest that CPEB3 binds to GluA2 mRNA, suppressing GluA2 protein synthesis leading to a distance-dependent increase in synaptic GluA2 AMPARs. The activity-induced expression of CPEB3 requires increased Ca(2+) and PKC activation. Our results suggest a cell-autonomous mechanism where sustained postsynaptic firing drives graded local protein synthesis, thus directing the spatial organization of synaptic AMPARs.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica , Neurônios/fisiologia , Proteína Quinase C/genética , Proteínas de Ligação a RNA/genética , Receptores de AMPA/genética , Potenciais de Ação/fisiologia , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microtomia , Neurônios/citologia , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
7.
eNeuro ; 3(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280156

RESUMO

The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Cerebelo/efeitos dos fármacos , Hidrazinas/farmacologia , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Animais , Fármacos do Sistema Nervoso Central/farmacocinética , Cerebelo/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/fisiologia , Difusão , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Raposas , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Compostos Orgânicos/farmacocinética , Compostos Orgânicos/farmacologia , Técnicas de Patch-Clamp , Espermina/farmacologia , Estresse Psicológico/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos , Urina
8.
Neuropharmacology ; 101: 531-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25842244

RESUMO

Neuronal activity can alter the phosphorylation state of eukaryotic elongation factor 2 (eEF2) and thereby regulates protein synthesis. This is thought to be the underlying mechanism for a form of synaptic plasticity that involves changes in the expression of synaptic AMPA type glutamate receptors. Phosphorylation of eEF2 by Ca/calmodulin-dependent eEF2 kinase reduces the activity of eEF2, and this is prevented by a commonly used eEF2 kinase inhibitor, NH125. Here we show that 10 µM NH125 increased the expression of synaptic GluA2-containing receptors in mouse cerebellar stellate cells and this was prevented by a protein synthesis inhibitor. However NH125 at 10 µM also reduced the level of CPEB3, a protein that is known to bind to GluA2 mRNA and suppress GluA2 (also known as GluR2) synthesis. In contrast, a low concentration of NH125 lowered the peEF2 level, but did not alter CPEB3 expression and also failed to increase synaptic GluA2 receptors. A selective eEF2 kinase inhibitor, A-484954, decreased the level of peEF2, without changing the expression of CPEB3. This suggests that reducing peEF2 does not lead to a decrease in CPEB3 levels and is not sufficient to increase GluA2 synthesis. Thus NH125 at 10 µM reduced the level of CPEB3, and promoted GluA2 translation via a mechanism independent of inhibition of eEF2 kinase. Therefore NH125 does not always alter protein synthesis via selective inhibition of eEF2 kinase and the effects of NH125 on translation of mRNAs should be interpreted with caution.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Neurônios/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Técnicas de Patch-Clamp , Piridinas/farmacologia , Pirimidinas/farmacologia
9.
J Neurophysiol ; 115(1): 271-85, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26510761

RESUMO

Glutamate directly activates N-methyl-d-aspartate (NMDA) receptors on presynaptic inhibitory interneurons and enhances GABA release, altering the excitatory-inhibitory balance within a neuronal circuit. However, which class of NMDA receptors is involved in the detection of glutamate spillover is not known. GluN2D subunit-containing NMDA receptors are ideal candidates as they exhibit a high affinity for glutamate. We now show that cerebellar stellate cells express both GluN2B and GluN2D NMDA receptor subunits. Genetic deletion of GluN2D subunits prevented a physiologically relevant, stimulation-induced, lasting increase in GABA release from stellate cells [long-term potentiation of inhibitory transmission (I-LTP)]. NMDA receptors are tetramers composed of two GluN1 subunits associated to either two identical subunits (di-heteromeric receptors) or to two different subunits (tri-heteromeric receptors). To determine whether tri-heteromeric GluN2B/2D NMDA receptors mediate I-LTP, we tested the prediction that deletion of GluN2D converts tri-heteromeric GluN2B/2D to di-heteromeric GluN2B NMDA receptors. We find that prolonged stimulation rescued I-LTP in GluN2D knockout mice, and this was abolished by GluN2B receptor blockers that failed to prevent I-LTP in wild-type mice. Therefore, NMDA receptors that contain both GluN2D and GluN2B mediate the induction of I-LTP. Because these receptors are not present in the soma and dendrites, presynaptic tri-heteromeric GluN2B/2D NMDA receptors in inhibitory interneurons are likely to mediate the cross talk between excitatory and inhibitory transmission.


Assuntos
Cerebelo/fisiologia , Ácido Glutâmico/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética
10.
J Physiol ; 590(1): 13-20, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21893602

RESUMO

The subunit composition of synaptic AMPA receptors can undergo dynamic changes during physiological functioning and under pathological conditions. This switch in AMPA receptor phenotype involves changes in the level of GluA2 subunits that are mediated via regulated AMPA receptor trafficking, modification of local protein synthesis and altered gene transcription of GluA2 subunits. Incorporation of the GluA2 subunits into an AMPA receptor alters a number of key biophysical properties, including Ca(2+) permeability and the waveform of the synaptic current. These changes alter the ability of synaptic currents to evoke an action potential and therefore have a profound effect on the computational capability of individual neurons and thus the output of neuronal circuits.


Assuntos
Cálcio/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Sinapses/genética , Sinapses/metabolismo , Potenciais Sinápticos/genética , Potenciais Sinápticos/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
11.
J Neurophysiol ; 106(1): 144-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21562198

RESUMO

Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.


Assuntos
Cerebelo/fisiologia , Interneurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Receptores de AMPA/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Cerebelo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Nifedipino/farmacologia , Peptídeos/farmacologia , Espermina/análogos & derivados , Espermina/farmacologia
12.
J Neurosci ; 31(2): 501-11, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228160

RESUMO

Changes in the subunit composition of postsynaptic AMPA-type glutamate receptors can be induced at CNS synapses by neural activity and under certain pathological conditions. Fear-induced incorporation of GluR2-containing receptors at cerebellar synapses selectively prolongs the decay time of synaptic currents, whereas a switch from GluR2-lacking to GluR2-containing receptors induced by parallel fiber stimulation reduces the amplitude in addition to lengthening the duration of EPSCs. Although it is often assumed that these two forms of synaptic plasticity will alter action potential (AP) firing in the postsynaptic neuron, this has not been directly tested. Using a dynamic current-clamp approach, we now show that the fear-induced increase in EPSC duration increases the size of EPSPs and thereby markedly enhances the AP firing probability. In contrast, the parallel fiber stimulation-triggered switch in GluR2 expression reduces the EPSP-AP coupling because of the decrease in the synaptic current amplitude. The switch also abolished the paired-pulse facilitation that arose from an activity and spermine-dependent unblock of GluR2-lacking receptors and hence reduced the ability of paired stimuli to evoke two consecutive APs. Therefore, fear-induced incorporation of GluR2 receptors enhances the EPSP-AP coupling, but the parallel fiber stimulation-triggered switch reduces both the EPSP-AP coupling and evoked AP doublets. In contrast to long-term potentiation and depression, which modify the amplitude of synaptic currents, this activity-induced change in AMPA receptor phenotype alters synaptic conductance waveform and postsynaptic short-term plasticity. These changes modulate both the probability and pattern of evoked AP firing via a fundamentally different mechanism from long-term potentiation and long-term depression.


Assuntos
Potenciais de Ação , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Cerebelo/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Medo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/fisiologia , Plasticidade Neuronal , Técnicas de Patch-Clamp , Receptores de AMPA/genética , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
13.
Nat Neurosci ; 13(2): 223-31, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20037575

RESUMO

Changes in emotional state are known to alter neuronal excitability and can modify learning and memory formation. Such experience-dependent neuronal plasticity can be long-lasting and is thought to involve the regulation of gene transcription. We found that a single fear-inducing stimulus increased GluR2 (also known as Gria2) mRNA abundance and promoted synaptic incorporation of GluR2-containing AMPA receptors (AMPARs) in mouse cerebellar stellate cells. The switch in synaptic AMPAR phenotype was mediated by noradrenaline and action potential prolongation. The subsequent rise in intracellular Ca(2+) and activation of Ca(2+)-sensitive ERK/MAPK signaling triggered new GluR2 gene transcription and a switch in the synaptic AMPAR phenotype from GluR2-lacking, Ca(2+)-permeable receptors to GluR2-containing, Ca(2+)-impermeable receptors on the order of hours. The change in glutamate receptor phenotype altered synaptic efficacy in cerebellar stellate cells. Thus, a single fear-inducing stimulus can induce a long-term change in synaptic receptor phenotype and may alter the activity of an inhibitory neural network.


Assuntos
Cerebelo/fisiologia , Medo/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Transcrição Gênica , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
14.
J Neurosci ; 29(2): 381-92, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19144838

RESUMO

Information processing in the CNS is controlled by the activity of neuronal networks composed of principal neurons and interneurons. Activity-dependent modification of synaptic transmission onto principal neurons is well studied, but little is known about the modulation of inhibitory transmission between interneurons. However, synaptic plasticity at this level has clear implications for the generation of synchronized activity. We investigated the molecular mechanism(s) and functional consequences of an activity-induced lasting increase in GABA release that occurs between inhibitory interneurons (stellate cells) in the cerebellum. Using whole-cell recording and cerebellar slices, we found that stimulation of glutamatergic inputs (parallel fibers) with a physiological-like pattern of activity triggered a lasting increase in GABA release from stellate cells. This activity also potentiated inhibitory transmission between synaptically connected interneurons. Extracellular recording revealed that the enhanced inhibitory transmission reduced the firing frequency and altered the pattern of action potential activity in stellate cells. The induction of the sustained increase in GABA release required activation of NMDA receptors. Using pharmacological and genetic approaches, we found that presynaptic cAMP/PKA (protein kinase A) signaling and RIM1alpha, an active zone protein, is the critical pathway that is required for the lasting enhancement of GABA release. Thus, a common mechanism can underlie presynaptic plasticity of both excitatory and inhibitory transmission. This activity-dependent regulation of synaptic transmission between inhibitory interneurons may serve as an important mechanism for interneuronal network plasticity.


Assuntos
Cerebelo/citologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Ligação ao GTP/deficiência , Glicina/farmacologia , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia
15.
Cerebellum ; 7(4): 559-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18855095

RESUMO

Inhibitory transmission controls the action potential firing rate and pattern of Purkinje cell activity in the cerebellum. A long-term change in inhibitory transmission is likely to have a profound effect on the activity of cerebellar neuronal circuits. However, little is known about how neuronal activity regulates synaptic transmission in GABAergic inhibitory interneurons (stellate/basket cells) in the cerebellar cortex. We have examined how glutamate released from parallel fibers (the axons of granule cells) influences postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in stellate cells and modulates gamma-aminobutyric acid (GABA) release from these neurons. First, we found that burst stimulation of presynaptic parallel fibers changes the subunit composition of post-synaptic AMPA receptors from GluR2-lacking to GluR2-containing receptors. This switch reduces the Ca(2+) permeability of AMPA receptors and the excitatory postsynaptic potential amplitude and prolongs the duration of the synaptic current, producing a qualitative change in synaptic transmission. This switch in AMPA receptor phenotype can be induced by activation of extrasynaptic N-methyl-D: -aspartate (NMDA) receptors and involves PICK1 and the activation of protein kinase C. Second, activation of presynaptic NMDA receptors triggers a lasting increase in GABA release from stellate cells. These changes may provide a cellular mechanism underlying associative learning involving the cerebellum.


Assuntos
Aprendizagem por Associação/fisiologia , Cerebelo/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Mamíferos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Ácido gama-Aminobutírico/metabolismo
16.
J Neurophysiol ; 98(1): 550-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17537903

RESUMO

The release of inhibitory transmitters from CNS neurons can be modulated by ionotropic glutamate receptors that are present in the presynaptic terminals. In the cerebellum, glutamate released from climbing fibers (but not from parallel fibers) activates presynaptic AMPA receptors and suppresses the release of the inhibitory transmitter GABA from basket cells onto postsynaptic Purkinje cells. This input-specific modulation has been attributed to the close proximity of the climbing fibers to the axons of the basket cells. Our recent work indicates that glutamate released from parallel fibers can "spill over" and reach the axons of stellate cells. Here I test the possibility that this spillover glutamate can activate presynaptic AMPA receptors in stellate cells and in this way modulate their release of GABA. I find that stimulation of parallel fibers activates AMPA receptors and transiently suppresses autoreceptor and autaptic GABAergic currents in stellate cells. Activation of AMPA receptors reduces the release of GABA and the suppression occurs more frequently in immature cells that have a high release probability. By contrast the release of GABA from mature stellate cells that have a low release probability is potentiated by the activation of NMDA-type glutamate receptors on presynaptic terminals. Thus during development, the glutamatergic modulation of GABA release switches from an AMPA-receptor-mediated transient suppression to a NMDA-receptor-induced lasting potentiation.


Assuntos
Interneurônios/metabolismo , Receptores de AMPA/fisiologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Interneurônios/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Técnicas de Patch-Clamp/métodos , Piperidinas/farmacologia , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
17.
Trends Neurosci ; 30(3): 126-34, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17275103

RESUMO

AMPA receptors mediate fast synaptic transmission at excitatory synapses in the CNS and are crucial during neuronal development, synaptic plasticity and structural remodeling. AMPA receptors lacking GluR2 subunits are permeable to Ca(2+) and Zn(2+). Ca(2+) permeation through AMPA receptors is crucial in several forms of synaptic plasticity and cell death associated with neurological diseases and disorders. The subunit composition and Ca(2+) permeability of AMPA receptors are not static, but they are dynamically remodeled in a cell- and synapse-specific manner during development and in response to neuronal activity, sensory experience and neuronal insults. Exciting new research shows that these changes arise not only because of regulated expression of the AMPA receptor subunit GluR2, but also as a consequence of RNA editing, receptor trafficking and dendritic protein synthesis. This article reviews new insights into the role of Ca(2+)-permeable AMPA receptors in neuronal function and survival.


Assuntos
Cálcio/metabolismo , Morte Celular/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Humanos , Permeabilidade , Subunidades Proteicas/metabolismo
18.
J Neurosci ; 26(36): 9332-9, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16957089

RESUMO

The excitability of a neuron is regulated by the balance of excitatory and inhibitory inputs that impinge on it. Such modulation can occur either presynaptically or postsynaptically. Here, we show that an excitatory transmitter can increase the release of an inhibitory transmitter and thus paradoxically produces a long-lasting enhancement of inhibitory synaptic transmission. This occurs at a near-physiological temperature. These findings from cerebellar stellate neurons reveal a novel form of long-term potentiation that is induced by the activation of NMDA-type glutamate receptors and that requires both glutamate and glycine. Our results indicate that Ca2+ entry into the presynaptic terminals during the activation of presynaptic NMDARs is necessary to induce the potentiation. This presynaptic modulation provides a mechanism by which an excitatory transmitter can induce a long-term increase in the release of an inhibitory transmitter and thus modify the activity of a simple neuronal circuit.


Assuntos
Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia
19.
Nat Neurosci ; 8(6): 768-75, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15895086

RESUMO

At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber-stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein (GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 (PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+ permeability of synaptic receptors.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Córtex Cerebelar/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Córtex Cerebelar/efeitos dos fármacos , Proteínas do Citoesqueleto , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
J Neurosci ; 22(10): 3881-9, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12019307

RESUMO

High-frequency synaptic stimulation is thought to cause a rapid and lasting change in the expression of GluR2 subunit-containing AMPA receptors (AMPARs) at synapses in cerebellar stellate cells. We examined whether spontaneous synaptic activity affects the expression of GluR2-containing synaptic AMPARs and whether the change in AMPAR subtypes alters their Ca(2+) permeability and kinetic properties. We used intracellular spermine, which blocks GluR2-lacking receptors at depolarized potentials, to distinguish the presence of GluR2. In most cells, the spontaneous EPSC frequency was low, and evoked EPSCs displayed inwardly rectifying I-V relationships, indicative of the presence of GluR2-lacking AMPARs. However, in cells that displayed a higher rate of spontaneous synaptic activity, EPSCs gave linear I-V plots, suggesting the presence of GluR2-containingAMPARs. This is consistent with the idea that spontaneous synaptic activity increased the expression of GluR2-containing AMPARs at synapses. The Ca(2+) permeability of AMPARs that gave inwardly rectifying currents in outside-out patches from TTX-treated cells was six times higher than in control cells that gave linear or outwardly rectifying I-V plots. However, increased spontaneous synaptic activity did not significantly alter the EPSC decay time. Furthermore, the decay time course ofEPSCs mediated by GluR2-containing receptors was not different from that mediated by a mixed population of receptors at the same synapse. Our results suggest that the level of spontaneous synaptic activity can determine the subunit composition of postsynaptic receptors at this synapse. The activity-induced expression of GluR2-containing receptors significantly reduced the Ca(2+) permeability of AMPARs in stellate cells but did not slow the decay time course of synaptic currents.


Assuntos
Cerebelo/metabolismo , Receptores de AMPA/metabolismo , Potenciais de Ação/fisiologia , Animais , Benzotiadiazinas/farmacologia , Cálcio/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Diuréticos , Estimulação Elétrica/métodos , Eletrofisiologia , Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Permeabilidade , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/classificação , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Espermina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...